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A method of calculating the diffraction of Lamb waves at the vertical junctions of elastic waveguides is proposed, the effectiveness 
of which is ensured by taktng into account the nature of the singularity of the solution at corner points. The property of the 
generalized orthogonality of normal modes plays a key role. It enables the coefficients of the expansion of the wave field in the 
modes to be expressed in terms of the displacements and stresses along the junction line. Numerical results are presented which 
show how the transmission coefficients and the energy distribution depend on the height of the step and frequency for a stepped 
waveguide, attached to an undeformed substrate. © 1998 Elsevier Science Ltd. All rights reserved. 

In addition to direct numerical schemes and asymptotic expansions, the fundamental semi-analytic 
method of solving problems of the diffraction of elastic waves by surface steps, the joining lines of half- 
strips, vertical cracks, etc. is an expansion in normal modes (the method of superposition or piecewise- 
homogeneous solutions) [1-6]. However, the infinite algebraic systems 

At = f (1) 

which arise here with respect to the unknown coefficients of the expansion t = {tl, t2, • • .}, tk = {tl, k, 
t2, k}, are operator equations of the first kind. Hence, their solution by a simple reduction method often 
turns out to be numerically unstable, while the representation of the wave field by a finite sum instead 
of a series is inapplicable in the near zone and, all the more, on the joining line where series in normal 
modes may even be divergent. The system can be regularized when it is separated in explicit form or 
by taking into account in the numerical scheme the behaviour of the solution at corner points, which 
determines the asymLptotic form of the unknown tk when k ~ oo [3-5]. 

For example, for a known behaviour of tk 

tk - cak('t), k ** (2) 

(in general, there may be several terms in (2) depending on the number of corner points or it may be 
necessary to take into account several terms of the expansion), system (1) can be reduced to an 
asymptotically equivalent stable system of the form 

N 
~ a t k t k + g t e = f  t, /=1,2 ..... N + I  (3) 
k=l 

Here c is an unknown coefficient in the asymptotic representation (2) and gl = Y.~ = N+lal~dk(7). The 
factors dk(7) depend on the index 7 of the singularity in the stresses at the corner point, which governs 
the rate at which they decrease as k ~ oo. 

Hence, the basis of this method of this method of regularization is obtaining asymptotic expansions 
of the type (2). 

In the case of mixed problems, which can be reduced to Wiener-Hopf equations (contact problems 
[7] and diffraction by horizontal obstacles [8 9, this approach turns out to be effective due to the use 
of explicit integral expressions for tk in terms of a function with a known behaviour on the boundary, 
which enables an expansion tk to be obtained as k ~ oo as an asymptotic form of oscillating integrals 
[9]. In the case of composite waveguides of finite thickness with vertical boundaries an approach was 
proposed in [10] in which the property of generalized orthogonality of normal modes plays a similar 
role for obtaining the asymptotic form of tk [1]. This enables tk to be expressed in terms of integrals of 
the displacements and stresses at the vertical boundary, the nature of the behaviour of which at corner 
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points of composite elastic solids is well known [11]. Moreover, the generalized orthogonality relation 
also enables one to use here the method of expansion in orthogonal polynomials with a weight carrying 
the required singularity at the corner points, so that the need to construct the asymptotic form of tk 
drops out. Not only is stability of the solution of the system ensured here but also the possibility of 
carrying out a numerical analysis in the near zone up to the waveguide junction line. 

Below we describe a form of this approach using the example of a composite elastic layer with a surface 
step. 

We consider a composite elastic waveguide with a step consisting of two half-strips of thickness hi 
and h2 (hz ~> h2, Ah = hi - h2 is the height of the step) with different constants of elasticity ~.~, ~t~ and 
density p~, n = 1, 2 (Fig. 1). On the junction line x = 0, 0 ~< z ~< h2 the conditions for rigid bonding 
(equality of the displacements and stresses) are satisfied, while the section of the end h2 ~< z ~< hi and 
the upper surfaces z = hi when x ~< 0 and z = h2 when x I> 0 are stress-free; the lower surface z = 0 is 
rigidly fixed. 

The harmonic wave field ue -i°t, u = {ux, uz} = {u 0), u (2)} in the first (left) half-strip is made up of 
the specified field u0e -~°t and the field of reflected waves ule-i°t: u = u0 + Ul, while in the second half- 
strip it consists of transmitted waves uze -i°t (the harmonic factor e q~ is henceforth omitted). When the 
waves are travelling from the right half-strip (u = u 0 + u 2 when x > O) the proposed solution scheme 
is not changed in principle. When carrying out the calculations either an individual normal mode arriving 
from infinity 

u 0 (x, Z) = aLt (z)e iGx (4) 

was specified as the field u0, or the field excited in an homogeneous layer of the normal lumped load 
~z = poS(x - Xo), applied to the surface of the left half-strip (x0 < 0) 

Uo (x, z) = ip 0 ~ a i,k (x - x o, z)e iG Ix-xol (5) 
k=l 

For the reflected and transmitted waves Ul and u2 and the corresponding fields of the stresses "rl, a'2 
('r = {cr=, z~z}), we also have an expansion in normal modes 

un(x,z)= ~tn,t#n,k(z)e ~iG'~x, "tn(x,z)= ~tn,kbn, k(z)e ~iG~x O<~z<~hn, n = l , 2  (6) k=l k=l 

an, k = {signxi~n, kPn(;n,k,Z-hn),  Rn(;n ,k ,Z-hn)}  l An(~n,k) 

(~'n +2gn)  ~-~ 2gn 
bn'k(z)e*iG'kx = Tn(an'k(Z)e:~i;n'kX)' Tn = 3 

Here and henceforth when n = 1, x ~< 0 we take the upper sign and when n = 1, x ~> 0 we take the 
lower sign. 

The form of the functions P~(ct, z)/A~(ct) and R~(a, z)/A~(ct), which occur in the second column of 
the symbol of Green's matrix K(cq, ¢t2), for the layer considered, bonded to the rigid base, is derived 
in [7]; the wave numbers _+~¢~ ( I m ~  t> 0) are the poles of K(cq, ¢x2) (the zeros are A~(ct), 
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~t = ~/(tx ] + a2)). The eigenvectors bn~ are defined in terms of  an~, using the stress operators Tn for 
the vertical area with normal parallel to the x axis. 

The conditions on the vertical boundary x = 0 have the form 

UO+Ul----112, '1"0+'1'1----"1'2, O < ~ z < ~ h 2  

"r0 +'rl = 0, h2<~Z~hl 
( %  = TlUo)  

(7) 
(8)  

The property of generalized orthogonality of normal modes [1] 

n(l)  /,.,(1) .~ t . (2 )  k(2) x 
'~n,m, vn,j)hn -- ~.t'n.j ,Vn.mlh n = O, m :;¢: J, n = 1, 2 (9) 

enables one to obtain an explicit solution in series of the auxiliary problem for a half-strip with opposite 
components of  the displacement and stress vectors specified on the ends (the normal component of  
the displacements u 0) and the shears x (2) or vice versa). 

Suppose, for example, that u0)(0, z) = u(z), x(2)(0, z) = a(z), where u and t~ are unknown functions 
in the interval [0, hl]. It then follows from the boundary conditions 

o )  ~0 x~2'(O,z) + X~o2)(o,z) = o(z), 0 ~ z ~ hi ul (O,z)+uo (O,z)=u(z), (10) 

u(2D(0,Z) --o (Z), Xt22)(0,Z) -- ¢Y(Z), 0 ~ Z ~ h2 (11) 

and relations (6) and (9), that 

h,k =[(u - '  (t) ~,0)~ _(t~_..(2) ~(2)x "o ,"i,k,~, "0 ,"i.k n, z ]ldl.k (12) 

(I) (2, 
t2, k = [(V, b~, k )h 2 -- ((Y, a2. k )h 2 ] / d2, k 

dn,k _ / . . ( I )  ~(i) ~ /~(2) k(2)~ -- ~.t.n,k,On,k ihn --~t.n,k.Un,klhn , n = 1,2 

Note that the function c~(z) is only unknown on the junction line [0, h:], and when z ~ [h:, hi] it follows 
from condition (8) that a(z) --- 0. 

The equations for finding t) and ~, in terms of which the required solution is expressed, by virtue of 
relations (6) and (12), are obtained from conditions (7) and (8) for the components u (2), x (1), which 
have not yet been used 

k=l - - t2 , t~ ,  (I) n ~ < ~ / , _  =--~(0 O, O<~z~h l  (13) [ tLkoi'k 1"2,k . . . . .  z 

[tt,kaL '-" . (2>1_ . (2) 
"2.k"2.k I -- -"o , 0 ~< Z ~/12 (14) 

k--I 

Using the general Bubnov-Galerkin scheme, Eqs (13) and (14) are projected onto the complete 
systems of coordinate functions {tPn, l}l~ 1, n = 1, 2 in the sections [0, hn]. (We can take as the projectors 
tpn~ the Legendre polynomials Pt(~),  ~ = 2z/hn - 1 ~ [-1, 1], n = 1, 2.) As a result, the partitioned 
elements ark of matrixA of system (1) and the components j~  on the right-hand side f = {fl, f2 . . . .  }, 
fl = { f l~ ,  f 2 f l  take the form 

(1) ! 
- I I  (~ l ' t ' b l . k  )h, (1) - (q~2.tb2.k)h2 

a#:-~(92.t,a[2,)k)h2 t,~ a(2), -- ~ 2 . l  2.kJh 2 

ft = ), - (uCo 2), } 
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Representation (12) for the unknowns tnj, in terms of the integrals of t), a enables us to construct 
the asymptotic form t ~  as k ~ o% since the behaviour of the functions o, ~ at the points z = 0, h2, hi 
which make the main contribution is easily obtained, starting from the results for the vertex of the 
composite elastic wedge [11]. Specifically for the waveguide geometry considered, the values of the stress 
singularity indicators 71, ?2 at these points were specially calculated previously for the whole range of 
possible combinations of elastic properties of the half-strips.t 

Another method of using this information to regularize the system is to expand the unknown functions 
u(z),  cs(z) in Jacobi polynomials P(m a' ~) (~) with a weight, which gives the required behaviour at these 
points 

M 
V .(1)..,(1)i_,. 0 ~< Z ~< h i (15) U (Z) = ~.,%, ~m t~), 

m=l 

¢ .(2),.,(2)r_'~ 
Or(Z) = .. .  ~,,, V . ,  ~ ' J ,  0 ~< Z <~//'2 

nl=l 

(I) ¥,,, (z) = (1 + ~, ) ' + ~ ' / ' ~ " ° ) ( ~  ) 

v~)(z) = (; + ~2Y' 0 - ~2) ~ P.(?"r~)(~) 
(16) 

(since re(z) has a discontinuity atz = h2, greater accuracy is obtained (but with more complicated calcula- 
tions) by expanding t~(z) separately in each of the sections [0, h2], [h2, hl] with a bonding condition at 
z = h 2 )  

M 
~ , b t m s m = f t - p t ,  /=1,2 ..... M (17) 

m=l 

him = ~ a l k r k m ,  Pl  = ~ a l k g k  
k--I k=l 

to which system (1) reduces by substituting the relations 

M 
tk = ~'. r~,Sm + gk 

m=l 

~ :bO),,,(O~ ra(2) ,,,(2)~ I n,ks,,, ,h, I dn.k I du k - -~  l , k ' Y m  )h 2 

r~ =llrt,(1),,,(t)x id2k r~(2),.,(2)~ idzk U~,~'2.k't'm Ph 2 . --~t~2.k ~Pm ]h 2 . 

fr //~(I) . (I)~ (2) {2) . 
gk = tt-~'q.k,"0 )ht +(al.k,X0 )hi ]/dl.k'0l (18) 

which follow from (12) and (15). 
System (17) has already been regularized, its solution is numerically stable, and to achieve the required 

accuracy a considerably lower dimensionality M is usually required than when using the stabilized system 
(2). A definite difficulty is the summation of the series when calculating the elements bt~ of the matrix 
and of the vector Pl, which, if necessary, can be overcome by standard methods of accelerating the 
convergence by taking into account the asymptotic forms of ate, r ~ ,  g~ as k -~ oo. 

Even better results can be obtained by a hybrid method, when the replacement (18) is made in system 
(1), beginning with a certain number N + 1, which leads to the hybrid system 

N M 
~at~t~ + ~ , b ~ s m = f t - P t ,  1=1,2 ..... N + M  
k=i m=l (19 )  

with respect to the unknowns tl . . . . .  kv and sl . . . . .  sM (the series for b/m, Pl begin here with k = N + 
1). The second sum here plays the role of a stabilizing correction, which ensures numerical stability as 
N increases. The hybrid scheme (18), (19) can thereby be considered as another method of regularizing 
system (1) without the need to construct the asymptotic form tn~. 

t GLUSHKOV, Ye. V. and GLUSHKOVA, N. V.., The features of the solution at comer points of composite elastic waveguides. 
Deposited at the All-Union Institute of Scientitie and Technical Information, N824-B91, 19 February 1991. 
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Fig. 2. 

T h e  effect iveness  of  the  scheme  can be  increased even fur ther  if the oscillation of  u(z), o(z),  due  to 
the contr ibut ion of  travelling modes  (real ~1~), is not approximated  by polynomials,  only the contr ibut ion 
of  t e rms  which decrease  exponent ial ly  with z, cor responding to complex ~1~, remaining,  i.e. by taking 

N 
o (z) = uCo I)(O, z) + u~l)(O, z ) -  E fi,2a~ I)(z) 

j= l  

N 
o(z) -- xto2 (o, z) + x12 (o, z ) -  g 

j=i 

(here  N is g rea te r  than  or  equal  to the n u m b e r  of  real ~l,k). This leads to a m o r e  complex  l inear  
re la t ionship be tween  tk and Sm than  (18), but  promises  a higher accuracy bo th  for  the coefficients tk of  
the travelling modes,  responsible  for  the energy balance,  and for  the stress intensity factors at the corner  
points,  which are expressed in te rms  of  sin. 

As an example we show in Fig. 2 the results of calculations of the frequency dependence of the energy transmission 
coefficients k2 = E2/Eo (the ratio of the energy of the passing waves u2 to the energy of the initial field u0) for a 
different height of the step Ah of a uniform waveguide with dimensionless parameters hi = 1, h2 = 1 - Ah, Pn = 
1, ~tn = 1, a Poisson's ratio vn = 0.3, n --- 1.2 and also for a waveguide of different modulus with ~t2 = 0.5 and Ah 
= 0.2 (the dashed cu~le 2' in Fig. 2a). The case of diffraction of the first mode (4) (k = 1), arriving from the left 
from the thicker half-strip (a) and the opposite case of transmission from right to left, i.e. from the thin half-strip 
to the thick one (b) is shown. The results for Ah = 0.1, 0.2 . . . . .  0.6 are represented by lines 1-6, respectively. 

For Fig. 2(a) a characteristic feature is the sharp reduction in the transmission coefficient in the frequency band 
2.94 < to < 2.94/h2, which is due to the fact that for an elastic layer with a single fixed boundary the first travelling 
mode appears for a value of the dimensionless wave number × = o~h/t) s = 1.57 (us = ~/(~p)), the second for × = 
2.94 (with a range of the backward wave of 2.88 - 2.94) and, subsequent ones with × = 4.71, 7.85 . . . . .  A second 
mode appears from the left when co > 2.94, whereas only one travelling wave is excited from the right when 
to < 2.94/h2 and leads to strong reflection of the signal in this band (Fig. 2a). A stronger reflection as a whole 
for high steps (Ah > 0.5) is also obvious due to the larger number of reflected travelling modes, which carry 
energy to the left, than passing modes, whereas the transmission of energy from right to left (Fig. 2b) depends 
only slightly on the height of the step. However, a partial-cutoff effect is also observed here (to ~ 6.8, 
Ah = 0.5), but it is more likely related to the specific structure of the streamlines of the energy flow, averaged 
over an oscillation period, which is characterized by the occurrence of energy vortices in the region of the junction 
line, which cover a considerable part of the cross-section of the waveguide up to complete blocking at the cutoff 
frequency [8]. 
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